

LCA e certificazioni ambientali di prodotto nella filiera olivicolo-olearia

Bruno Notarnicola

Dipartimento Jonico in Sistemi giuridici ed economici del Mediterraneo – Società, Ambiente, Culture

Università degli Studi di Bari

Iniziative per la sostenibilità delle filiere agroindustriali
Salone Internazionale del Gusto – "Terra Madre" – Torino – 24 ottobre 2014

La filiera olivicolo-olearia

OLIVE PER OLIO (Censimento dell'agricoltura dell'ISTAT, 2010)

- Italia: 1.064.395,7 ha coltivati nel 2010 (12% della superficie mondiale)
- Produzione nazionale di olive per olio di 30.309.680 quintali (16 % della produzione mondiale)
- N. aziende Italia = 895.850
- Puglia (33% del totale nazionale sia superficie che produzione)
- N. aziende Puglia = 226.229 (25% del totale nazionale)

OLIO (campagna 2012/13 - Fonte ISMEA)

- Produzione nazionale olio = 4,8 milioni di quintali (17% della produzione mondiale)
- Produzione pugliese = 34% della produzione nazionale

OLIO (campagna 2013/14 - Fonte ISMEA)

• Produzione nazionale olio = -8% sulla campagna precedente

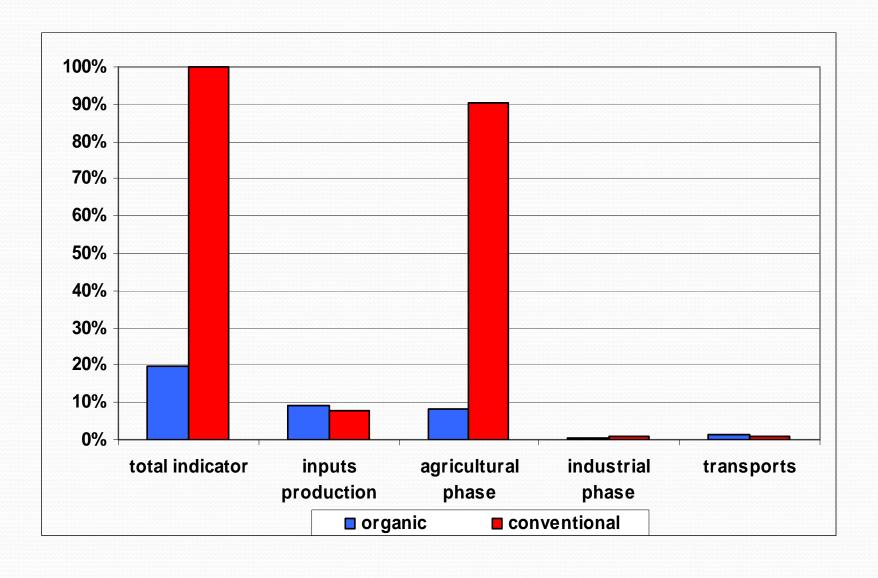
Contenuti

- 1. LCA nella filiera olivicola olearia
- 2. I sistemi di ecoetichettatura
- 3. L'Environmental Product Declaration dell'olio d'oliva
- 4. Conclusioni

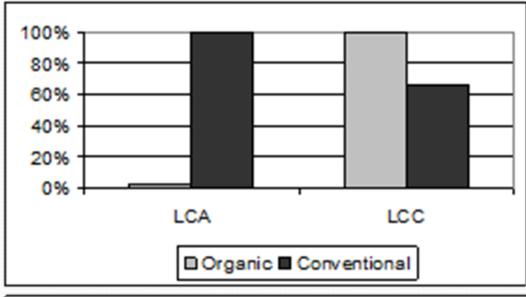
Finalità degli studi di LCA nel settore della produzione di olio d'oliva

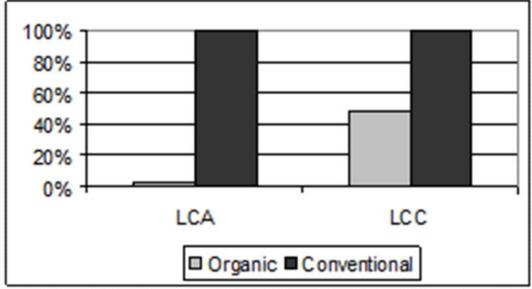
- identificazione dei punti critici del sistema
- individuazione di possibili miglioramenti ambientali
- comparazione di diverse pratiche agricole, es. biologico contro convenzionale
- comparazione di diversi metodi di estrazione e di smaltimento dei reflui

Es.1: LCA ed LCC dell'olio biologico e convenzionale

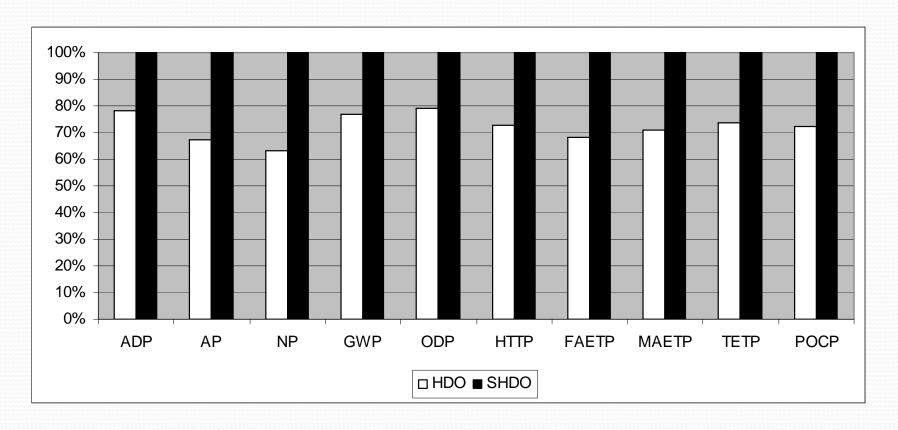

Definizione dello scopo e degli obiettivi:

Analizzare il carico ambientale dei sistemi di produzione di olio extra-vergine di oliva da agricoltura biologica e convenzionale, al fine di confrontare i due sistemi, identificarne gli "hot spots" e suggerire eventuali opzioni per il miglioramento del profilo ambientale.


Caratterizzazione dei due sistemi



Eco-indicatore dei due sistemi



LCA ed LCC dei due sistemi

Es.2: Innovative olive-growing models: an economic and environmental assessment

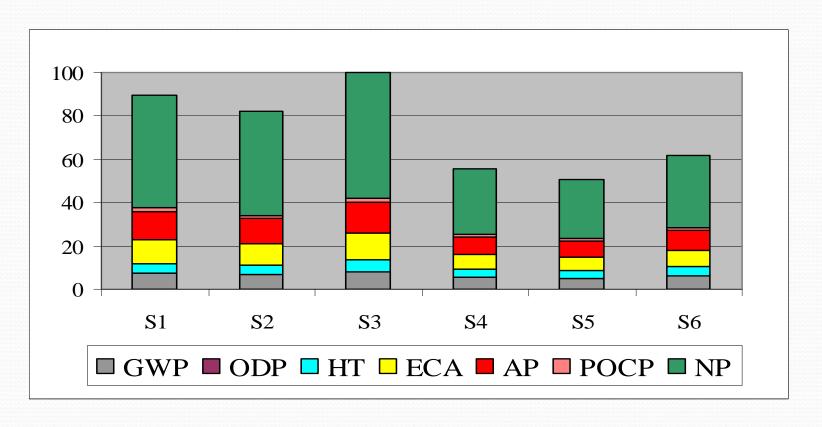
Caratterizzazione dei due sistemi intensivo (400 piante/ha) – superintensivo (1667 piante/ha)

Es. 3: L'impatto ambientale della filiera dell'olio d'oliva: pratiche agricole e tecniche di estrazione

Sistemi esaminati

S1: coltivazione in asciutto, sistema di estrazione per pressione singola;

S2: coltivazione in asciutto, sistema di estrazione per pressione doppia;

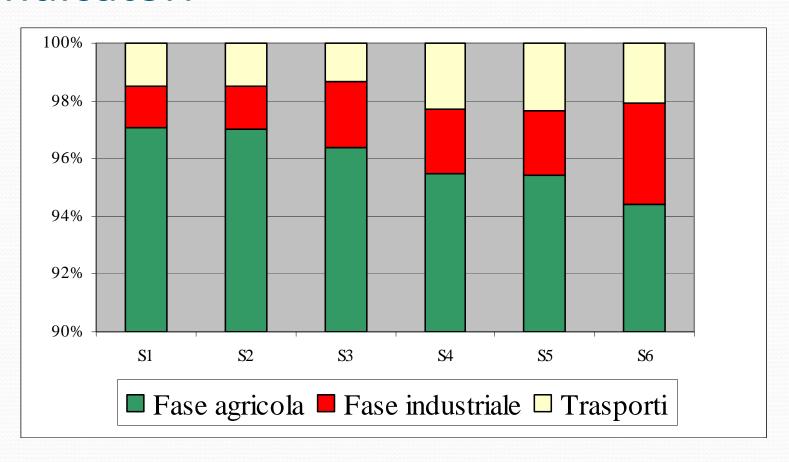

S3: coltivazione in asciutto, sistema di estrazione per centrifugazione (3 fasi);

S4: coltivazione irrigua, sistema di estrazione per pressione singola;

S5: coltivazione irrigua, sistema di estrazione per doppia pressione;

S6: coltivazione irrigua, sistema di estrazione per centrifugazione (3 fasi)

Eco-indicatori normalizzati dei sistemi esaminati


GWP - effetto serra AP - acidificazione

ODP - diminuzione strato di ozono HT - tossicità umana POCP - smog fotochimico

NP - eutrofizzazione

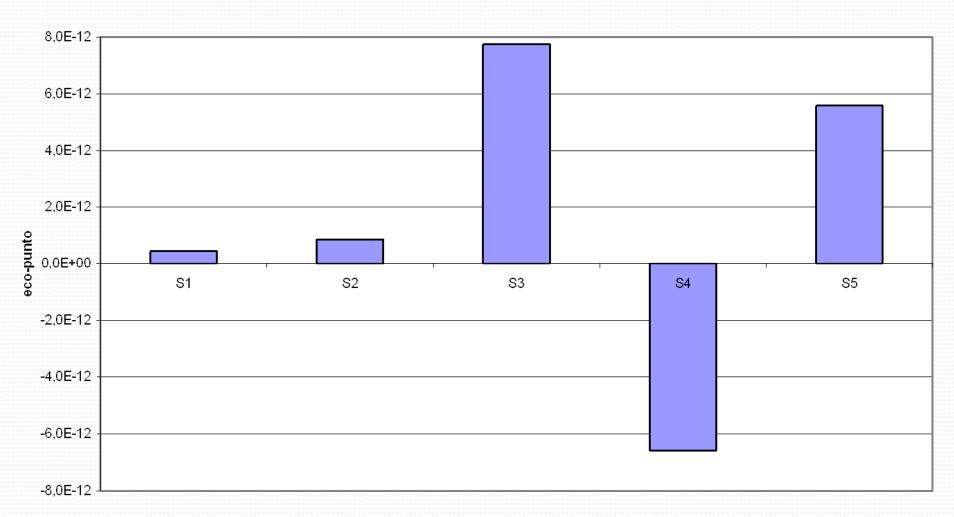
ECA - tossicità ambientale

Contributi delle tre fasi agli ecoindicatori

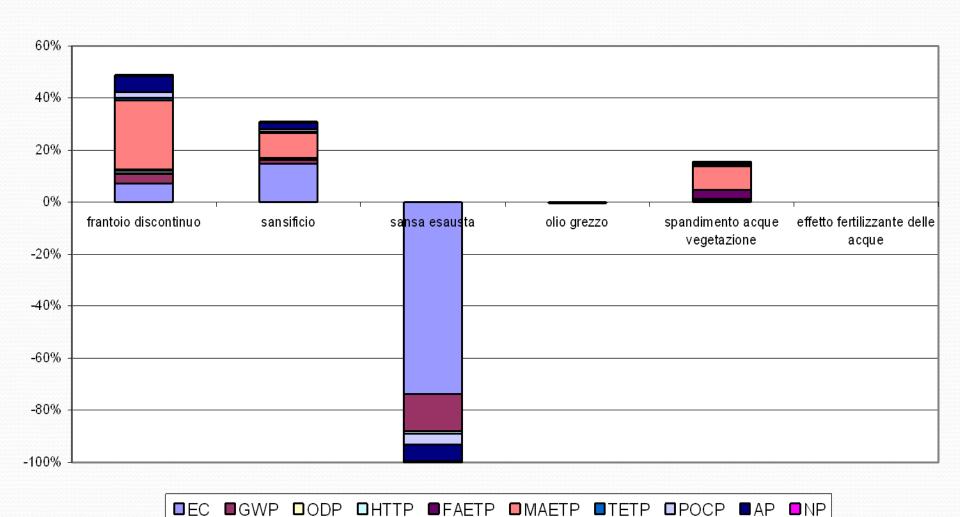
Es. 4: Ricadute ambientali nella filiera dell'olio di oliva

Definizione dello scopo e degli obiettivi:

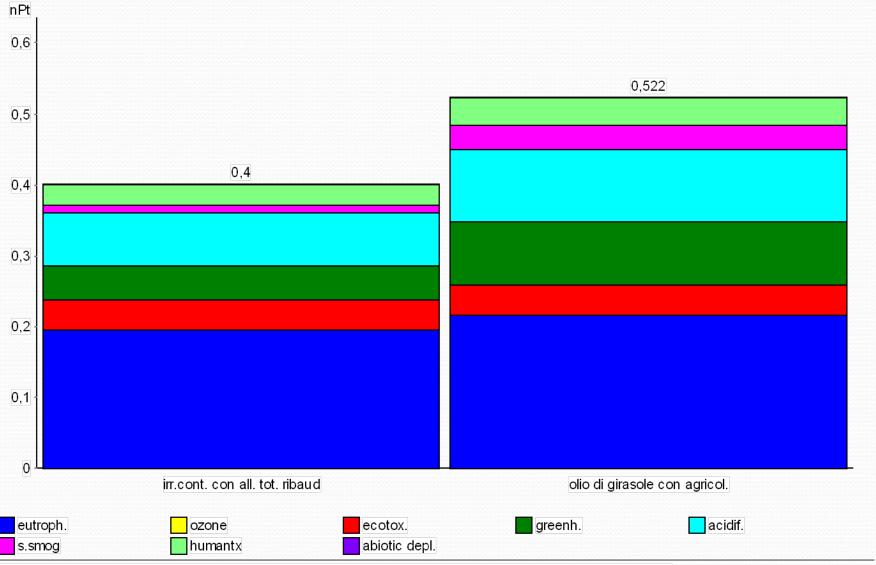
Obiettivo dello studio di LCA è quello di valutare il carico ambientale della filiera dell'olio di oliva focalizzando l'attenzione in particolar modo sui <u>diversi processi di produzione</u> e sui <u>diversi trattamenti dei reflui</u>.


Obiettivo finale è quello di identificare le fasi critiche dei vari sistemi e le eventuali opzioni di miglioramento che si possono realizzare lungo la filiera.

1. LCA nella filiera olivicola olearia


SISTEMI ANALIZZATI

Sistema	Fase industriale	Reflui prodotti	Trattamento reflui		
Sistema 1 (S1)	Trasformazione discontinua	Sansa	Avviata al sansificio		
		Acque di vegetazione	Spandimento		
Sistema 2 (S2)	Trasformazione continua tre fasi	Sansa	Avviata al sansificio		
		Acque di vegetazione	Spandimento		
Sistema 3 (S3)	Trasformazione continua tre fasi	Sansa	Avviata al compostaggio		
		Acque di vegetazione	Spandimento		
Sistema 4 (S4)	Trasformazione continua due fasi	Sansa umida	Avviata al recupero energetico		
Sistema 5 (S5)	Trasformazione continua due fasi	Sansa umida	Avviata al compostaggio		


L'ecoindicatore dei cinque sistemi a confronto

Profilo ambientale di S1

ES. 5: Confronto olio d'oliva-olio di girasole

Comparing report 'olio oliva/olio girasole'; Method: SimaPro 2.0 (CML) nuovo+ECT / W-Eur. territory / single score

Asserzioni ambientali di tipo III: dichiarazione ambientale

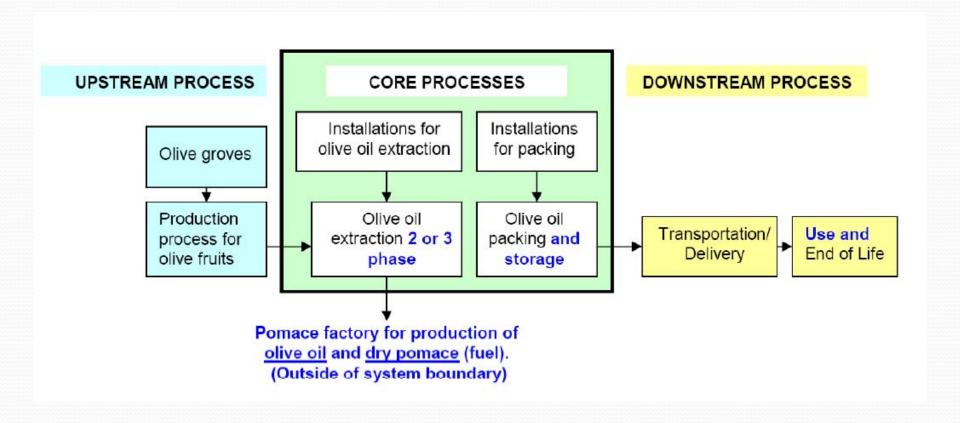
E' una dichiarazione consistente in una scheda di prodotto sui potenziali impatti ambientali associati al ciclo di vita del prodotto: Dichiarazione Ambientale di Prodotto (DAP) o Environmental Product Declaration (EPD)

Asserzioni ambientali di tipo III: esempi

Programma International EPD System®

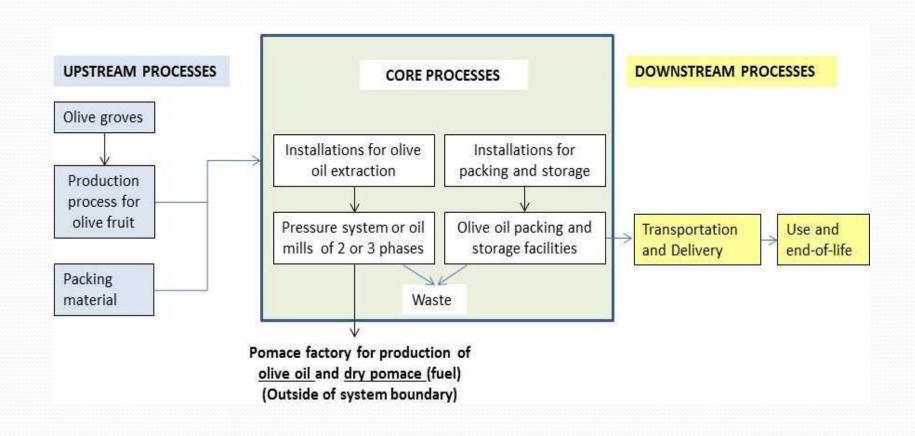
Product Environmental Footprint® (PEF)

Pilot su olive oil:


1° meeting di consultazione: 30 ottobre 2014

PCR per l'olio d'oliva

- Name: Virgin olive oils and its fractions
- **CPC Code:**21537
- **CPC name:**Olive oil, crude
- **Approval date:**2010-04-27
- Registration No:2010:07
- **Version**: 2.01
- **Updated**: 2014-04-10
- Valid until:2017-04-01


Requisiti della EPD dell'olio d'oliva

1) Confini del sistema VERSIONE 1.0

Requisiti della EPD dell'olio d'oliva

1) Confini del sistema VERSIONE 2.0

2) Informazioni relative al prodotto

- Marchio dell'azienda (se esistente)
- Cenni descrittivi della organizzazione, di eventuali certificazioni di prodotto e di sistema
- Utilizzo della EPD
- L'unità funzionale adottata
- Dichiarazione dei contenuti ovvero un elenco dei materiali e delle sostanze chimiche che possono essere contenute nei materiali

3) Informazioni relative alle prestazioni ambientali

- si basano sullo studio di LCA
- devono includere l'uso di risorse (rinnovabili e non), i consumi di energia (rinnovabile e non), i consumi di acqua
- Produzione di rifiuti
- Gli impatti ambientali potenziali associati espressi come Categorie di Impatto

3) Informazioni relative alle prestazioni ambientali

Gli impatti ambientali potenziali da considerare sono:

- Effetto serra
- Riduzione dello strato di ozono stratosferico
- Acidificazione
- Eutrofizzazione
- Ossidazione fotochimica
- Land use

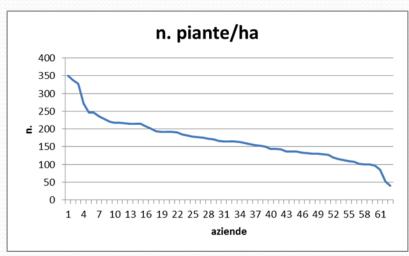
4) Informazioni ambientali aggiuntive

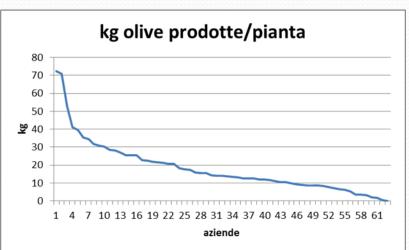
Altri indicatori ambientali

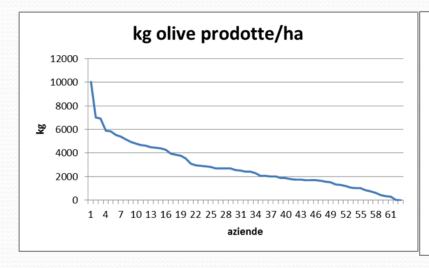
- Energia rinnovabile
- Emissioni di sostanze tossiche

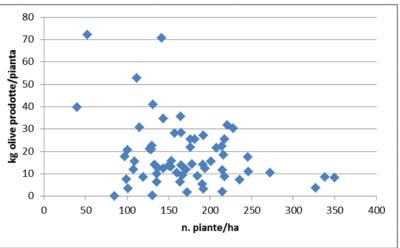
Altre informazioni riguardanti:

- Esistenza di un sistema di qualità ambientale
- Contributo estetico degli uliveti
- Contributo degli uliveti alla biodiversità
- Attività aziendali riguardanti la responsabilità sociale, ecc.

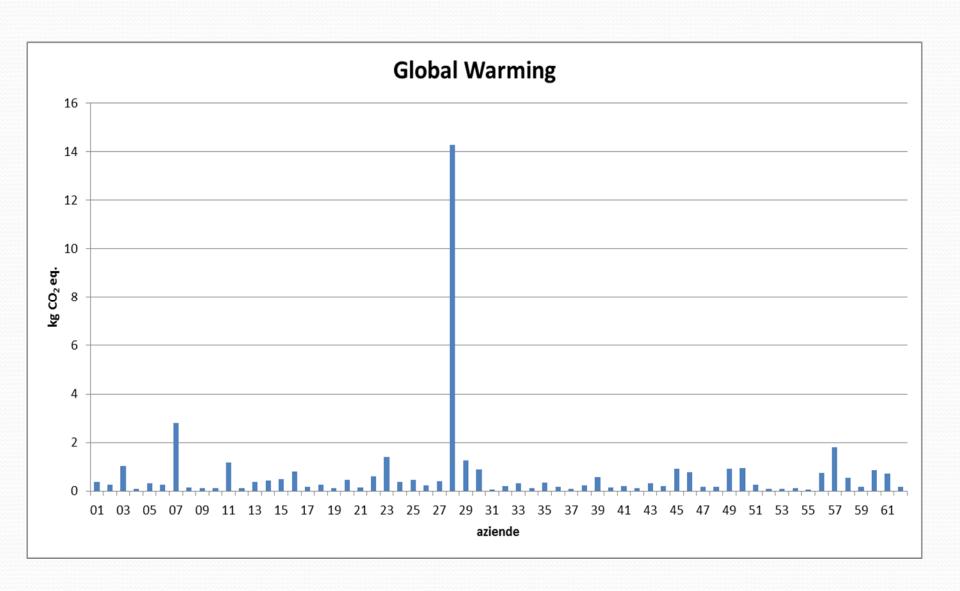

Diffusione delle EPD dell'olio d'oliva


Product/Service		Company	Category	
tit	Extra virgin olive oil by 68 olive growers in Southern Greece	Farmers Groups of Nileas, Peza Union and Mirabello Union	Food & agricultural products	
	Apolio Depitted Extra Virgin Olive Oil	Apolio Srl	Food & agricultural products	
dotta	Castillo de Canena Extra virgin olive oil	Castillo de Canena Olive Juice S.L.	Food & agricultural products	
49	Oasis Extra Virgin Olive Oil	Assoproli Bari	Food & agricultural products	
	Monini Extra Virgin Olive Oil "Gran Fruttato"	Monini S.p.A	Food & agricultural products	
	Monini Extra Virgin Olive Oil "Classico"	Monini S.p.A	Food & agricultural products	
	Monini Extra Virgin Olive Oil "Poggiolo"	Monini S.p.A	Food & agricultural products	
	Monini Extra Virgin Olive Oil "Delicato"	Monini S.p.A	Food & agricultural products	
	De Cecco Extra virgin olive oil	De Cecco	Food & agricultural products	


Punti critici della EPD dell'olio

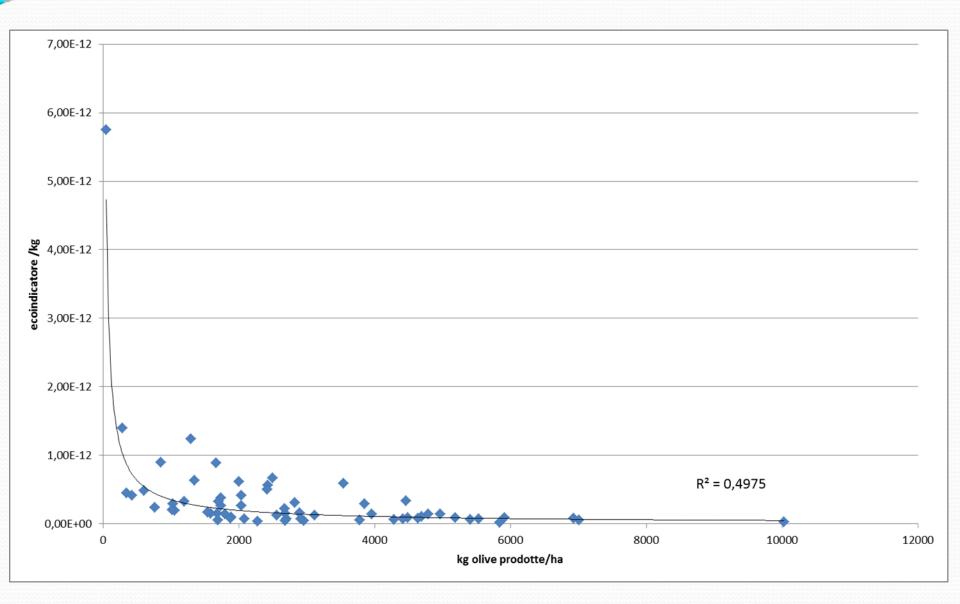

- Necessità di informazioni dalla filiera (a monte e a valle)
- Cooperazione all'interno della filiera
- Necessità della raccolta di dati specifici e verificabili
- Implementazione di procedure di qualità per l'esame dei processi e la raccolta dei dati
- Fase agricola risulta più impattante: individuare le modalità di conduzione dell'oliveto più eco-compatibili

Caratteristiche produttive delle aziende



Inventario/ha delle operazioni agricole dei sistemi esaminati

			media		dev.	
		min	aritm.	max	standard	CV
piante	n.	40	170,3	350	59,9	35%
input						
solfato ammonico	kg	0,01	59,8	600,0	140,2	234%
fertilizzante npk	kg	0,01	45,4	400,0	98,3	216%
concime organico	kg	0,01	55,7	1400,0	207,5	372%
acqua per irrigazione	m^3	0	236,5	401,1	159,6	67%
en. el. per irrigazione	kWh	0	248,3	397,1	154,5	62%
fosforganici diserbanti	kg	0	0,0	3,0	0,4	787%
olio minerale bianco	kg	0	2,1	50,0	9,3	450%
composti del rame	kg	0,01	42,8	128,0	34,6	8o%
insetticidi fosforganici	kg	0,01	6,0	28,0	6,5	108%
acqua per fitofarmaci	m^3	0	5,8	12,8	3,6	62%
gasolio per lavor. e tratt.	MJ	238	2212,0	3933,1	940,0	(42%)
gasolio per raccolta	MJ	0	380,9	1620,7	464,1	121%
benzina per raccolta	MJ	O	968,5	10547,0	1743,0	180%
output						
olive raccolte	kg	0	2832,7	10027,8	1929,7	68%



GWP/kg olive dei 63 sistemi esaminati

Rapporto produttività-ecoindicatore

Conclusioni

- Variabilità enorme nelle modalità di gestione dell'uliveto con pratiche agronomiche molto diverse da produttore a produttore, anche nello stesso areale
- La maggiore produttività per ettaro non implica un miglior profilo ambientale
- I sistemi produttivi che presentano il miglior profilo ambientale risultano quelli in cui si impiegano pochi fertilizzanti e pesticidi, non si irriga e si conduce un allevamento dell'uliveto poco intensivo realizzato in aziende dalle classi dimensionali più piccole
- Attenzione all'uso di dati agricoli provenienti da banche dati che molto spesso non riflettono la situazione oggetto di studio – Necessità di una banca dati italiana

Conclusioni

- LCA come strumento di innovazione nella filiera di produzione di olio d'oliva
- LCA è uno strumento fondamentale per le certificazioni ambientali di prodotto
- La fase critica risulta nei vari studi quella agricola
- Necessità di redigere linee guida basate sulla LCA per l'individuazione delle migliori pratiche agricole in olivicoltura e per uniformare i comportamenti

Grazie per l'attenzione

Bruno Notarnicola

Dipartimento Jonico in Sistemi giuridici ed economici del Mediterraneo – Ambiente, culture, società Università degli Studi di Bari

bruno.notarnicola@uniba.it

Tel. 099/7723428