PLATFORM MEETING

L'esperienza dei Progetti LIFE per la sostenibilità ambientale dell'industria Ceramica e dei Laterizi

Overview of LIFE projects in the ceramic sector

Lorenzo MENGALI – Neemo/Timesis

Sassuolo – 11 aprile 2017

Ceramic Industry in EU (I)

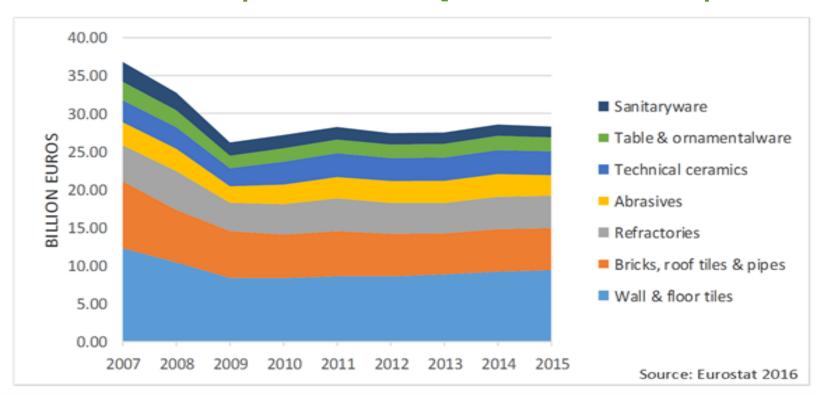
Data source and assumptions

- CERAME-UNIE: Annual Report 2015
- CERAME-UNIE: 2050 Roadmap for ceramic industry (2012)
- ACIMAC: World Production & Consumption of ceramic tiles (2016)
- BREF on Ceramics (2008)
- Not all data from the same period/year
- In some cases data only from specific sub-sectors
- Only to provide a general picture

Ceramic Industry in EU (II)

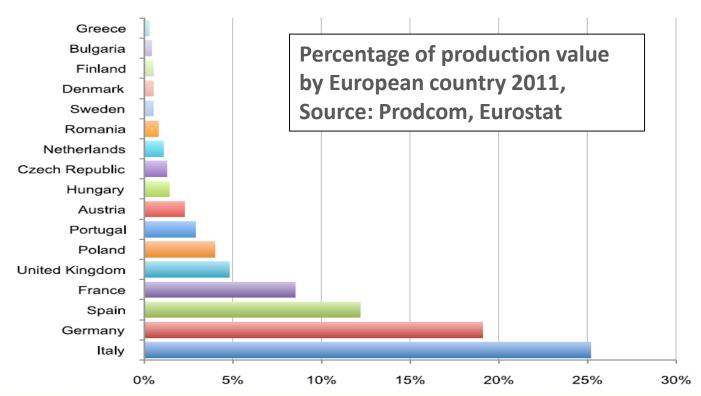
Some numbers

- 8 main sub-sectors
- Yearly production value of about 30 billion €
- About 25% sold outside of the EU
- Net trade surplus of 4.4 billion €
- 200,000 direct jobs in all European regions
- 80% in SME (local jobs)
- High energy intensive sector (up to 30% energy costs)



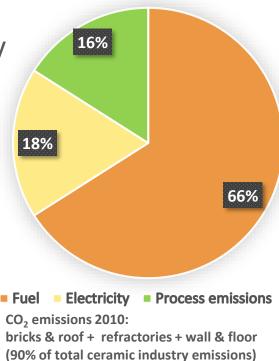
Ceramic Industry in EU (III)

Production value per sub-sector [CERAME-UNIE - Report 2015]



Ceramic Industry in EU (IV)

Production value by EU country [CERAME-UNIE - Roadmap 2050]


Ceramic Industry in EU (V)

Energy consumption and emissions

- Firing is the most energy consuming phase
- Up to 30% of production costs from energy
- CO₂ emissions mainly from fuel

Share in production costs [wall & roof tiles – Cerame-Unie (2013)]	
Energy	25% - 30%
Labour	25% - 30%
Raw materials	30% - 35%
Other production costs	10% - 15%

Emission shares [Roadmap 2050]

LIFE & Ceramics (I)

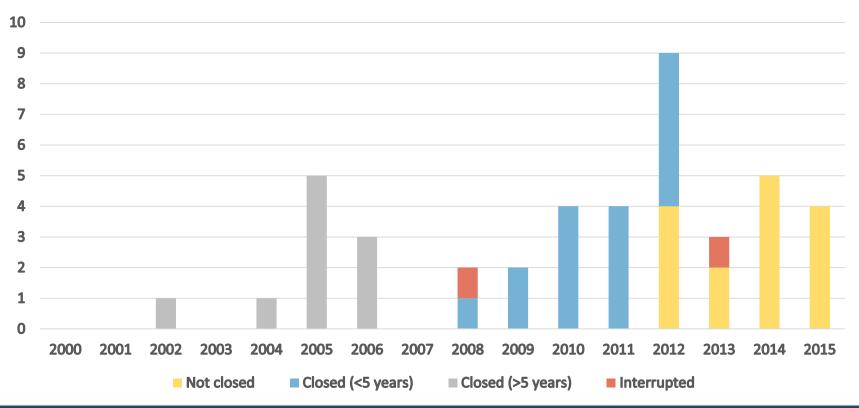
Data source

- Search from the <u>LIFE programme database</u>
 - Main keywords: Ceramic Industry & plain text "ceramic"
 - But also: Building Materials, Industrial Waste, and others
- Web summaries & project websites
- Other dissemination materials
 - Layman's report
 - Brochures/leaflets/informative panels
 - Etc.

LIFE & Ceramics (II)

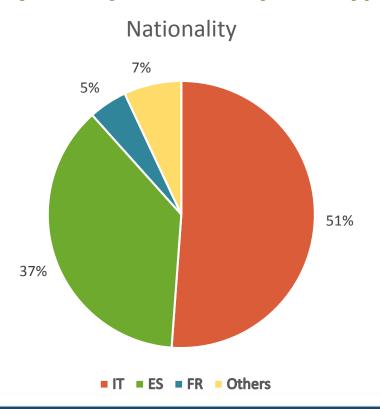
Main findings

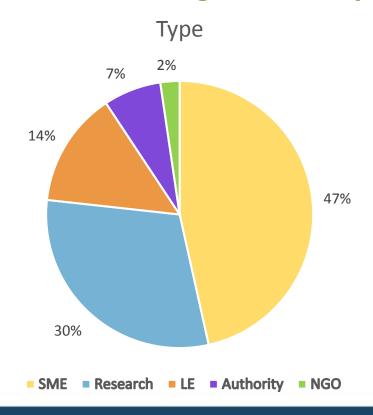
- In the period 2000-2015: 43 projects in total
- Mainly from Italy and Spain
- Mainly from SME and research institutes
- Mainly related to Floor & Wall tiles and Bricks & Roof tiles
- Mostly dealing with recycling, waste and energy efficiency



LIFE & Ceramics (III)

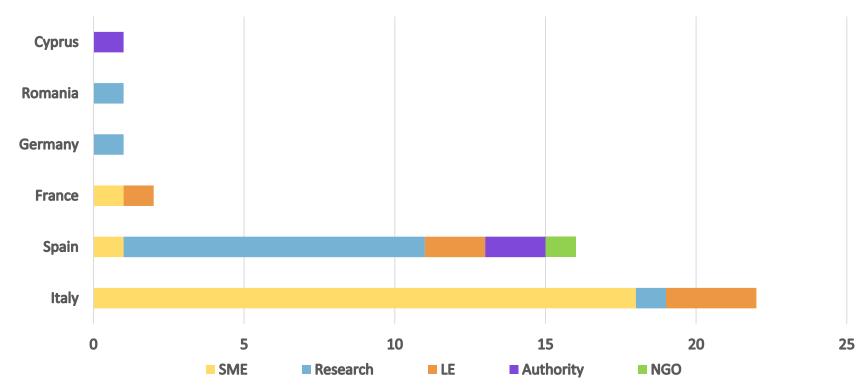
Number of LIFE projects in Ceramics by year (call)





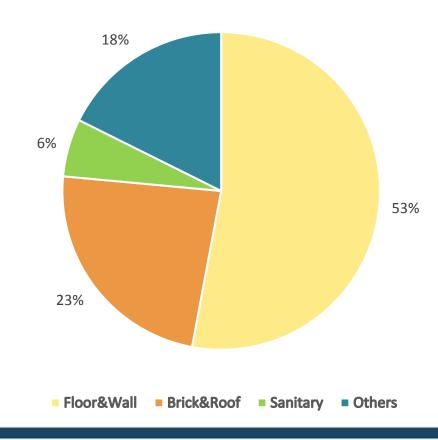
LIFE & Ceramics (IV)

Projects by nationality and type of the Coordinating Beneficiary



LIFE & Ceramics (V)

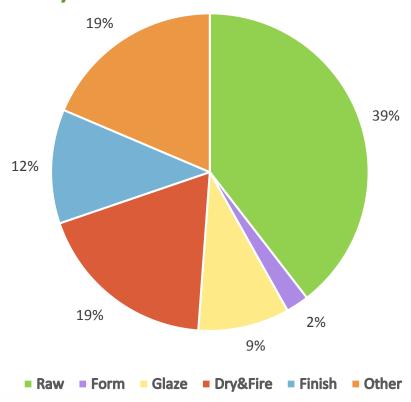
Projects by nationality and type of the Coordinating Beneficiary



LIFE & Ceramics (VI)

Projects by ceramic sub-sector

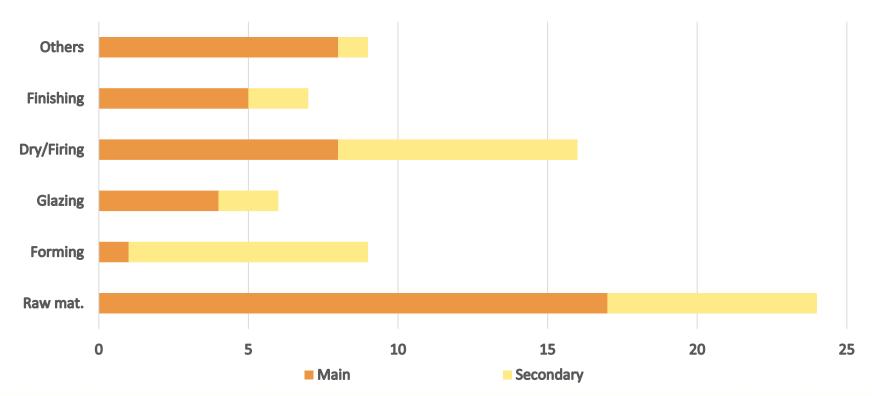
- Floor & wall tiles
- Bricks & roof tiles
- Sanitaryware
- Others
 - Tableware
 - Generic (e.g. exhaust gases)
 - Special (e.g. heating elements)
 - Etc.



LIFE & Ceramics (VII)

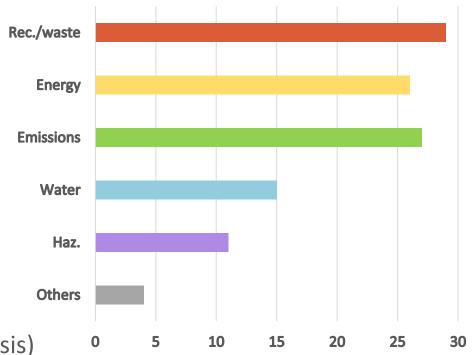
Projects by process stage targeted (main)

- Raw material preparation
- Forming
- Drying
- Glazing
- Firing
- Finishing operations
- Others
 - Tile design; exhaust gas treatment
 - Etc.



LIFE & Ceramics (VIII)

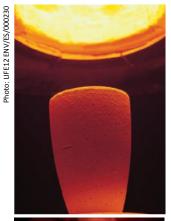
Projects by process stage targeted (main & secondary)



LIFE & Ceramics (IX)

Main environmental issues addressed

- Recycling / waste reduction
- Energy consumption
- Emissions
- Water consumption
- Hazardous materials
- Others
 - Noise reduction; flooding
 - Drugs degradation (photo-catalysis)
 - Etc.



Some examples (I)

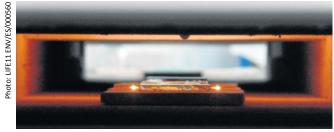
Recycling from glass/ceramic/stone

- LIFE14 ENV/IT/801 LIFE ECO TILES:
 ECO innovative methodologies for the valorisation of construction and urban waste into high grade TILES
- <u>LIFE12 ENV/ES/230 LIFE CERAM:</u> Zero waste in ceramic tile manufacture
- LIFE12 ENV/IT/1095 LIFE SANITSER:
 Sanitaryware production: use of waste glass for saving energy and resources
- <u>LIFE11 ENV/CY/859 QuaResE:</u> Quarry Resource Efficiency Demonstration Project

Some examples (II)

Recycling from other sectors

- <u>LIFE15 ENV/ES/530 LIFE LEACHLESS</u>: Low energy treatment technology for leachate valorisation
- <u>LIFE14 ENV/ES/252 LIFE FOUNDRYTILE:</u>
 Valorization of iron foundry sands and dust in the ceramic tile production process
- <u>LIFE10 ENV/RO/729 EcoWASTES:</u>
 New building materials by eco-sustainable recycling of industrial wastes
- <u>LIFE08 ENV/E/148 ECO-VITRUM-TRC:</u>
 Integral management model of cathode rays glass: closing the circle of recovery, recycling and reuse of WEEE'S



Some examples (III)

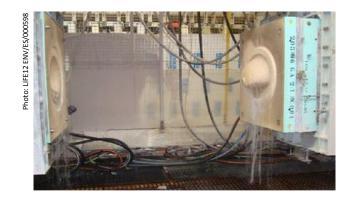
Energy consumption

- <u>LIFE15 CCM/IT/104 LIFE ECONOMICK:</u> Energy consumption and CO2 and NOx emissions Minimised in an Intermittent Ceramic Kiln
- <u>LIFE12 ENV/FR/142 LIFE HEART:</u>
 improved HEAt Recovery in clay roof Tiles an bricks production
- <u>LIFE11 ENV/ES/560 CERAMGLASS:</u>
 Environmentally Friendly Processing of Ceramics and Glass
- <u>LIFE09 ENV/ES/435 LASERFIRING:</u>
 Climate Change Adaptation of the Structural Ceramics Industry by Decreasing the Firing Temperature Using Laser Technology

Some examples (IV)

Emissions

- LIFE14 CCA/IT/939 LIFE HEROTILE:
 High Energy savings in building cooling by ROof TILEs shape optimization toward a better above sheathing ventilation
- <u>LIFE12 ENV/IT/424 LIFE ZEF-tile:</u>
 Zero Emission Firing strategies for ceramic tiles by oxyfuel burners and CO2 sequestration with recycling of byproducts
- <u>LIFE09 ENV/IT/108 EnerGeo:</u>
 Insulating high strength-controlled porosity geopolymer floor tiles for the mitigation of global warming

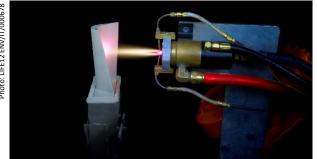


Some examples (V)

Water consumption

- <u>LIFE12 ENV/ES/598 LIFE ENVIP :</u>
 New environmentally friendly forming technique of ceramic sanitary wares by isostatic pressing.
- LIFE11 ENV/IT/110 W-LAP:
 Waste eliminating and water-free new revolutionary technology for surface treatment of marbles, stones and tiles
- <u>LIFE06 ENV/IT/254 UME:</u>
 Ultrasound micro-cut ecosustainable
- LIFE02 ENV/IT/052 Microfinishing:

 A new dry process of microfinishing of gres porcelain and natural stone surfaces, which will substitute the stage of smoothing/polishing (...)



Some examples (VI)

Hazardous materials

- <u>LIFE14 ENV/ES/238 SILIFE:</u>
 Production of quartz powders with reduced crystalline silica toxicity
- <u>LIFE12 ENV/IT/678 LIFE ReTSW-SINT:</u>
 Recycling of thermal spray waste in sintered products
- Replacement of toxic lead compounds by new non-toxic substitutes as brilliant aid agent in polychromatic glazes
- <u>LIFE06 ENV/E/001 ReLiStoP:</u>
 Resin-free Liquid-Stone Process elimination of synthetic polluting resins and toxic solvents used in the production of decorative elements (...)

Some examples (VII)

Other applications

- <u>LIFE15 CCA/ES/091 LIFE CERSUDS:</u>
 Ceramic Sustainable Urban Drainage System
- LIFE14 CCM/ES/311 LIFE FERTILIFE:
 Agricultural carbonic fertilization with ceramic industry GEI emissions
- <u>LIFE13 ENV/IT/140 LIFE+ DIGITALIFE:</u>
 A novel manufacturing process for photocatalytically activate ceramic tiles by digital printing.

Main environmental benefits (I)

Recycling

- Mainly from ceramic and glass waste (ceramic tiles)
- Up to 90% of recycled material in ceramic products
 - Depending on the type of product (tiles, bricks, expanded clay, etc.)
 - On the quality of waste (internal scraps, unsorted / sorted / "pure", etc.)
 - On the target market (urban paving, construction, interior design, etc.)
- Usually affecting all the processing stages
 - New forming/drying/firing conditions

Main environmental benefits (II)

Energy efficiency

- Mainly related to
 - Different or new firing/cutting/polishing techniques
 - Lower firing temperatures (usually due to change in raw materials)
 - Heat recovery
- Reduction in energy consumption ranging from 10% to 40%
 - Usually related to the specific process targeted (not the whole production)
- With benefits related also to reduced emissions (mainly CO₂)

Main environmental benefits (III)

Water consumption

- Mainly related to
 - Different or new forming/cutting/polishing techniques
 - Reuse of waste water or sludge
- Reduction in water consumption ranging from 20% to 100%
 - Usually related to the specific process targeted (not the whole production)

Some final remarks

Main gaps and possible improvements

- Composition requirements on recycled materials is often missing
 - Acceptable level of impurities
 - Availability, reliability and stability of supply
 - Effects on the quality of the final product
- Lack of detailed cost/benefit and market analysis
- New products actually entered the market after the project?
 - Lack of information on this aspect in project and company websites
 - Not clearly identifiable in the product lists of the beneficiaries
- Possibility to provide data for the BREF-CER update (2018)

GRAZIE PER L'ATTENZIONE

Per ulteriori informazioni:

lorenzo.mengali@neemo.eu

* Disclaimer: Unless stated otherwise, all pictures on this presentation belong to the LIFE project featured on the slides or EU.